Package: missingHE 1.5.0
missingHE: Missing Outcome Data in Health Economic Evaluation
Contains a suite of functions for health economic evaluations with missing outcome data. The package can fit different types of statistical models under a fully Bayesian approach using the software 'JAGS' (which should be installed locally and which is loaded in 'missingHE' via the 'R' package 'R2jags'). Three classes of models can be fitted under a variety of missing data assumptions: selection models, pattern mixture models and hurdle models. In addition to model fitting, 'missingHE' provides a set of specialised functions to assess model convergence and fit, and to summarise the statistical and economic results using different types of measures and graphs. The methods implemented are described in Mason (2018) <doi:10.1002/hec.3793>, Molenberghs (2000) <doi:10.1007/978-1-4419-0300-6_18> and Gabrio (2019) <doi:10.1002/sim.8045>.
Authors:
missingHE_1.5.0.tar.gz
missingHE_1.5.0.zip(r-4.5)missingHE_1.5.0.zip(r-4.4)missingHE_1.5.0.zip(r-4.3)
missingHE_1.5.0.tgz(r-4.4-any)missingHE_1.5.0.tgz(r-4.3-any)
missingHE_1.5.0.tar.gz(r-4.5-noble)missingHE_1.5.0.tar.gz(r-4.4-noble)
missingHE_1.5.0.tgz(r-4.4-emscripten)missingHE_1.5.0.tgz(r-4.3-emscripten)
missingHE.pdf |missingHE.html✨
missingHE/json (API)
# Install 'missingHE' in R: |
install.packages('missingHE', repos = c('https://angabrio.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/angabrio/missinghe/issues
cost-effectiveness-analysishealth-economic-evaluationindividual-level-datajagsmissing-dataparametric-modellingsensitivity-analysis
Last updated 2 years agofrom:54a075d4b0. Checks:OK: 1 NOTE: 6. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 10 2024 |
R-4.5-win | NOTE | Oct 10 2024 |
R-4.5-linux | NOTE | Oct 10 2024 |
R-4.4-win | NOTE | Oct 10 2024 |
R-4.4-mac | NOTE | Oct 10 2024 |
R-4.3-win | NOTE | Oct 10 2024 |
R-4.3-mac | NOTE | Oct 10 2024 |
Exports:data_read_hurdledata_read_patterndata_read_selectiondata_read_selection_longdiagnostichurdlejagsresultspatternpicppcselectionselection_long
Dependencies:abindbackportsbayesplotBCEABHbootbriobroomcallrcarcarDatacheckmatechkclicodacolorspacecorrplotcowplotcpp11crayondenstripDerivdescdiffobjdigestdistributionaldoBydplyrevaluateextrasfansifarverforcatsFormulafsgenericsGGallyggmcmcggplot2ggpubrggrepelggridgesggsciggsignifggstatsggthemesgluegridExtragtablehmsinlineisobandjsonlitelabelinglatticelifecyclelme4loomagrittrMASSMatrixMatrixModelsmatrixStatsmcmcplotsmcmcrMCMCvismgcvmicrobenchmarkminqamodelrmunsellnlistnlmenloptrnnetnumDerivoverlappingpatchworkpbkrtestpillarpkgbuildpkgconfigpkgloadplyrpolynomposteriorpraiseprettyunitsprocessxprogresspspurrrquantregQuickJSRR2jagsR2WinBUGSR6rbibutilsRColorBrewerRcppRcppEigenRcppParallelRdpackrematch2reshape2rjagsrlangrprojrootrstanrstatixscalessfsmiscSparseMStanHeadersstringistringrsurvivaltensorAtermtestthattibbletidyrtidyselectuniversalsutf8vctrsviridisLitewaldowithr
Fitting MNAR models in missingHE
Rendered fromFitting_MNAR_models_in_missingHE.Rmd
usingknitr::rmarkdown
on Oct 10 2024.Last update: 2023-03-20
Started: 2020-05-24
Introduction to missingHE
Rendered fromIntroduction_to_missingHE.Rmd
usingknitr::rmarkdown
on Oct 10 2024.Last update: 2023-03-20
Started: 2020-05-22
Longitudinal Models in missingHE
Rendered fromLongitudinal_models_in_missingHE.Rmd
usingknitr::rmarkdown
on Oct 10 2024.Last update: 2023-03-20
Started: 2023-03-20
Model Customisation in missingHE
Rendered fromModel_customisation_in_missingHE.Rmd
usingknitr::rmarkdown
on Oct 10 2024.Last update: 2023-03-20
Started: 2020-05-24